1,525 research outputs found

    Quartz micro-balance results of pulse-resolved erosion/deposition in the JET-ILW divertor

    Get PDF
    Proceedings of the 22nd International Conference on Plasma Surface Interactions 2016, 22nd PSIA set of quartz crystal microbalances (QMB) was used at JET with full carbon wall to monitor mass erosion/deposition rates in the remote areas of the divertor. After introduction of the ITER- like wall (ILW) in JET with beryllium main wall and tungsten divertor, strong reduction of the material deposition and accompanied fuel retention was observed. Therefore the existing QMB electronics have been modified to improve the accuracy of frequency measurements by a factor of ten down to 0.1Hz which corresponds to 1.4ngcm−2. The averaged deposition rates of 1.2–3ngcm−2s−1 and erosion rates of 5.6–8.1ngcm−2s−1 were observed in the inner divertor of JET -ILW with the inner strike point positions close to the bottom edge of vertical tile 3 and at the horizontal tile 4 respectively. The erosion with averaged rates of ≈2.1ngcm−2s−1 and ≈120ngcm−2s−1 were observed in the outer divertor for the outer strike point positions at tile 5 and tile 6 respectively.Peer reviewe

    Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall

    Get PDF
    For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.Peer reviewe
    • …
    corecore